Header a MOSA O2

Header_Line_MOSA - www.mosao2.org - Medical Oxygen Society of the Amercias

HOME

Header_Line_MOSA - www.mosao2.org - Medical Oxygen Society of the Amercias

Header_Line_MOSA - www.mosao2.org - Medical Oxygen Society of the Amercias
Header_Line_MOSA - www.mosao2.org - Medical Oxygen Society of the Amercias
Header_Line_MOSA - www.mosao2.org - Medical Oxygen Society of the Amercias
Header_Line_MOSA - www.mosao2.org - Medical Oxygen Society of the Amercias Header_Line_MOSA - www.mosao2.org - Medical Oxygen Society of the Amercias

CONTACT

Header_Line_MOSA - www.mosao2.org - Medical Oxygen Society of the Amercias

3D Map of the Americas - MOSA - Medical Oxygen Society of the Americas

Header Logo - MOSA - Medical Oxygen Society of the Americas
Google Language Translator - MOSA - Medical Oxygen Society of the Americas - www.mosao2.org
   
   
HOME PAGE menu white arrow - MOSA - www.mosao2.org - Medical Oxygen Society of the Americas
NEWS / RESEARCH menu white arrow - MOSA - www.mosao2.org - Medical Oxygen Society of the Americas
   

bg grey mosao2

MOSA Membership - Click Here to Enroll - www.mosao2.org - Medical Oxygen Society of the Americas
bg grey mosao2

MOSA Newsletter - Sign Up Here - www.mosao2.org - Medical Oxygen Society of the Americas

bg grey mosao2
MOSA Study Groups - Sign Up Here - www.mosao2.org - Medical Oxygen Society of the Americas
bg grey mosao2
 
Spacer - MOSA - Medical Oxygen Society of the Americas - www.mosao2.org


MOSA - Article

Spacer - MOSA - Medical Oxygen Society of the Americas - www.mosao2.org


Oxygen Medicine:

Cell Respiration - Aerobic vs Anaerobic

Logo - MOSA - Medical Oxygen Society of the Americas
Spacer - MOSA - Medical Oxygen Society of the Americas - www.mosao2.org

 

http://hyperphysics.phy-astr.gsu.edu/hbase/biology/celres.html

 

 

Cell Respiration - Aerobic vs Anaerobic


Cellular Respiration

 

The term cellular respiration refers to the biochemical pathway by which cells release energy from the chemical bonds of food molecules and provide that energy for the essential processes of life. All living cells must carry out cellular respiration. It can be aerobic respiration in the presence of oxygen or anaerobic respiration.

 

Prokaryotic cells carry out cellular respiration within the cytoplasm or on the inner surfaces of the cells. More emphasis here will be placed on eukaryotic cells where the mitochondria are the site of most of the reactions. The energy currency of these cells is ATP, and one way to view the outcome of cellular respiration is as a production process for ATP.

 

 

Aerobic Cell Respiration

 

 

________________________________________

 

 

The graphic below serves as a reminder of some of the processes involved in cellular respiration.

 

Diagram - Cellular Respiration - Glycolisis

 

 

Cellular respiration produces CO2 as a metabolic waste. This CO2 binds with water to form carbonic acid, helping to maintain the blood's pH. Since too much CO2 would lower the blood's pH too much, the removal of the excess CO2 must be accomplished on an ongoing basis.

 

 

________________________________________

 

 

Aerobic Respiration

 

Aerobic respiration, or cell respiration in the presence of oxygen, uses the end product of glycolysis (pyruvate) in the TCA cycle to produce much more energy currency in the form of ATP than can be obtained from any anaerobic pathway. Aerobic respiration is characteristic of eukaryotic cells when they have sufficient oxygen and most of it takes place in the mitochondria.

 

 

________________________________________

 

 

Anaerobic Respiration

 

The first step in cellular respiration in all living cells is glycolysis, which can take place without the presence of molecular oxygen. If oxygen is present in the cell, then the cell can subsequently take advantage of aerobic respiration via the TCA cycle to produce much more usable energy in the form of ATP than any anaerobic pathway.

 

Nevertheless, the anaerobic pathways are important and are the sole source of ATP for many anaerobic bacteria. Eukaryotic cells also resort to anaerobic pathways if their oxygen supply is low. For example, when muscle cells are working very hard and exhaust their oxygen supply, they utilize the anaerobic pathway to lactic acid to continue to provide ATP for cell function.

 

Glycolysis itself yields two ATP molecules, so it is the first step of anaerobic respiration. Pyruvate, the product of glycolysis, can be used in fermentation to produce ethanol and NAD+ or for the production of lactate and NAD+. The production of NAD+ is crucial because glycolysis requires it and would cease when its supply was exhausted, resulting in cell death. A general sketch of the anaerobic steps is shown below. It follows Karp's organization.

 

 

Diagram - Cellular Respiration - Fermentation Anaerobic Oxidation of NADH vs Aerobic Pathway via TCA Cycle

 

Anaerobic respiration (both glycolysis and fermentation) takes place in the fluid portion of the cytoplasm whereas the bulk of the energy yield of aerobic respiration takes place in the mitochondria.

 

Anaerobic respiration leaves a lot of energy in the ethanol or lactate molecules that the cell cannot use and must excrete.

 

 

________________________________________

 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/biology/celres.html

 

 

   

 

 

Copyright @ 2011 www.mosa02.com. All Rights Reserved.


Disclaimer:

While every effort has been made to ensure that the information and data provided on this website are correct, no guarantee can be provided that
the information it contains is completely error-free. MOSA shall not be held liable for information and data that is not up-to-date, correct or complete.

MOSA reserves the right to edit, change or add to the information and data provided without prior notice. This website is produced and published
so that you can broaden your health education and options. Please consult your physician before considering any therapy.